=========================preview======================
(MATH113)113 finall99fall.pdf
Back to MATH113 Login to download
======================================================
Math113 L2 Linear Algebra: Final Examination
Dept of Math, HKUST, Fall 1999
Name: Tutor:

ID No. Section:

Problem No. 1 (30 pts) No. 2 (52 pts) No. 3 (28 pts) Total (110 pts)

Score
3

2

3

2

.210 123

1. (5.6. 30 pts) LetA.

64

0.1 0

75

and Q.

64

012

75

.

0 1.2 001
(a)
Find all eigenvalues of A.

(b)
Find indep endent eigenvectors of A corresp onding each eigenvalue.


(c)
Compute the matrix A .

.1 365

(d)
Find all eigenvalues of Q A Q.

.1 365

(e)
Find indep endent eigenvectors of Q A Q for each eigenvalue.



89
Solution: (a) . . .1; .2.
3

2

1

64

75

. For . . .2, we have indep endent

(b) For . . .1, we have the indep endent eigenvector v.

1

1

1

3

2

3

2

10

64

0

75

andv.

3

64

0

75

eigenvectors v.

2

.

01

3

2

3

2
3

2

110 .100 010

64

100

75

.1

. ThenP AP .

64

0.2 0

75

.1

.P .

64

1 .1 0

75

89

. Thus A .

(c) SetP .

101 0 0.2 0.11

3
2

3

2

89
89 89
.100 .22.10

64

0.2 0

75

.1

P.

64

0 .1 0

75

.

P

89 89
0 0.2 0 2 .1.2
365
(d)...1;.2 .
.1 365.1.1 365
(e) If v is an eigenvector of A corresp onding tothe eingenvalue ., then Q A QQ v . Q A v .

.1 365 365.1.1 365 365

Q . v . . Q v. Thus Q v is an eigenvector of A corrp esp onding to the eigenvalue . .

3

2
3

2

100 0

.1

Therefore Q .

64

.2 10

75

64

.1

75

. For

.1

. For . . .1, the indep endent eigenvector u. Q v.

1

1

1.21 1

2
3

2

11

64

0

64

.2

.

365.1

.1

. . .2 , the indep endent eigenvectors are u. Q v.

andu.Q v.

2

2

3

3

01

1

2. (6.7+ 10 . 52 pts) Let v;v;v;v;vbe column vectors of the following matrix

12345
3

2

1010 1

A.

64

0100 1

75

:

0 0 1 0 .2

(a)
Find a basis for Nul A.

(b)
Find Spanfv;v;v;v;vg.

(c)
Find an orthonormal basis for Row A.

(d)
Find the orthogonal pro jection from R to Nul A and its matrix.

(e)
Find the orthogonal pro jection from R to Row A and its matrix.

(f)
Find the distances from the point (5;0;0;1; 0) to the subspaces NulA and Row A respectively.

(g)
(Bonus) Find an upper triangular 3 . 3 matrix R and 5 . 3 matrix Q such that the column vectors



12345
5
5
T
of Q are orthonormal and QR . A .
2

3. Part A: Circle one and only one answer for the following problems. (5 . 3 . 15 pts)
(a)
Let A be an m . n matrix. Which one is correct.

i. dim Row A . dim Nul A;
ii. dim Row A . dim Nul A;
iii. dim Row A . dim Nul A;
iv.
dim Row A . dim Col A;

v.
dim Row A . dim Col A;


vi. dim Row A . dim Col A;
vii. dim Nul A . dim Col A;
viii. dim Nul A . dim Col A;
ix. dim Nul A . dim Col A.

(b)
Let A be an n . n matrix. Which one is incorrect.


i. If 0 is an eigenvalue of A, then A is not invertible.
ii. If 0 is not an eig