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ABSTRACT
We present SPOT+, a system that allows office workers
to optimally balance between heating energy consumption
and personal thermal comfort. In prior work, we described
SPOT: a smart personal thermal control system based on
reactive control [8]. In contrast, the SPOT+ system per-
forms predictive control. Specifically, SPOT+ uses the k -
nearest-neighbour algorithm to predict room occupancy and
learning-based model predictive control (LBMPC) to pre-
dict future room temperature and to compute the optimal
sequence of control inputs. This allows the system to sched-
ule future temperature setpoints to optimize an objective
function expressed as a linear combination of thermal com-
fort and energy consumption. We have deployed SPOT+
as well as four other alternative control schemes in an of-
fice workspace. We find that SPOT+ reduces energy usage
by 60% compared to a fixed-temperature setpoint and re-
duces personal thermal discomfort from 0.36 to 0.02 (in the
ASHRAE comfort scale) compared to SPOT.
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General Terms
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1. INTRODUCTION
Buildings account for almost a third of global energy con-

sumption [11]. Heating, Ventilation and Air-Conditioning
(HVAC) systems are the dominant energy consumers in both
residential and commercial buildings in most developed coun-
tries, accounting for 50%-70% of their energy use [1,2,13,15].
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Reducing the energy consumption of HVAC systems can,
therefore, significantly reduce energy consumption in these
countries [17].

We focus on heating individual workspaces1 during the
winter season. The energy consumption of the workspace
heating system obviously depends on the chosen tempera-
ture setpoint: the higher this setpoint, the greater the en-
ergy use. Thus, it is always possible to save energy either
by lowering the setpoint or by turning the system off when
a workspace is presumed vacant. However, both actions re-
duce worker thermal comfort, so overly aggressive tempera-
ture setback is counter-productive. Thus, our overall goal is
to allow individual workers to balance between energy use
and their own comfort.

In prior work [8], we described SPOT, a personal thermal
control system for workspaces that models worker comfort
using the Predicted Personal Vote (PPV) model (described
below) and automatically adjusts room heating to maintain
a desired comfort level. A building using SPOT could lower
the overall building temperature setpoint, with a SPOT con-
troller in each work space providing an offset to this base
temperature. For instance, most commercial buildings today
are heated to 23◦C in winter. Instead, we suggest that the
buildings be heated only to, say, 20◦C, and that each work
space have a small computer-controlled radiant heater that
heats the work space to a personalized higher level. Impor-
tantly, SPOT is reactive in that it only takes control actions
when the worker is actually present. Therefore, it cannot
pre-heat the workspace before the arrival of the worker, or
turn off heating in anticipation of the worker’s departure.
In this paper, we present SPOT+ that learns worker occu-
pancy patterns and room thermal characteristics to compute
the optimal sequence of control inputs.

Specifically, SPOT+ uses the k -nearest-neighbour algo-
rithm to predict future workspace occupancy from past ob-
servations [16]. It also builds a thermal model of the room
using learning-based model predictive control (LBMPC) so
that it can predict the future workspace temperature given
the energy input of the HVAC system. It then uses an opti-
mal control framework to find the best temperature setpoint
schedule for the rest of the day, over a set of half-hour times-
lots. Such an optimal setpoint schedule preheats the room
before the estimated worker arrival time and stops heating
before the estimated worker departure time. It also finds the
optimal setpoint that minimizes energy consumption with-
out affecting user comfort when the room is occupied.

1For simplicity, we assume that workspaces are thermally
isolated. Thus, our work does not apply to open-plan offices.



Our work makes the following contributions:

• We have designed SPOT+, an optimal predictive con-
trol scheme for personalized workspace thermal control
that balances energy consumption and worker comfort

• We have implemented SPOT+ as well as four other
temperature control schemes and compared their rela-
tive performance in a real testbed

• We find that SPOT+ can save about 60% of energy
comparing with a fixed temperature setpoint, and can
reduce thermal discomfort from 0.36 to 0.02 (on the
ASHRAE comfort scale) compared to the SPOT reac-
tive temperature control scheme

The rest of this paper is laid out as follows. Section II
presents a background on quantitative comfort modelling
and an overview of SPOT. We discuss optimal control using
LBMPC as well as occupancy prediction in Section III, fol-
lowed by an evaluation of SPOT+ and competing schemes in
Section IV. Section V presents related work and we conclude
in Section VI.

2. BACKGROUND
We first describe the Predicted Personal Vote (PPV) com-

fort metric to evaluate personal thermal comfort in indoor
environments that we used in the SPOT control system [8].
We then describe SPOT and it’s shortcomings, which moti-
vate SPOT+.

2.1 Predicted Personal Vote (PPV) Model
The PPV model is a generalization of the well-known Pre-

dicted Mean Vote (PMV) model [3, 7]. The PMV model
estimates an average worker’s comfort level on the 7-point
ASHRAE scale2 using a function fpmv(·):

pmv = fpmv(x) = fpmv(ta, t̄r, var, pa,M, Icl) (1)

where pmv is the predicted mean vote and x denotes the
following environmental and personal variables:

• ta is the air temperature

• t̄r is the mean background radiant temperature

• var is the air velocity

• pa is the humidity level

• M is the metabolic rate of a worker

• Icl is the worker’s clothing insulation factor

Then,

pmv(x) = (0.303 · exp(−0.036 ·M) + 0.028)·8>><>>:
(M −W )− 3.05 · 10−3 · (5733− 6.99 · (M −W )− pa)
−0.42 · ((M −W )− 58.15)− 1.7 · 10−5 ·M · (5867− pa)
−0.0014 ·M · (34− ta)− 3.96 · 10−8 · fcl · ((tcl + 273)4

−(t̄r + 273)4)− fcl · hc · (tcl − ta)

9>>=>>;
(2)

where tcl is the clothing surface temperature, and W is
the effective mechanical power which is 0 for most indoor
activities.

2Cold (-3), Cool (-2), Slightly Cool (-1), Neutral (0), Slightly
Warm (+1), Warm (+2), and Hot (+3).

Variable tcl can be evaluated by:

tcl =35.7− 0.028 · (M −W )− Icl · (3.96 · 10−8 · fcl·
((tcl + 273)4 − (t̄r + 273)4) + fcl · hc · (tcl − ta)) (3)

Variable hc is the convective heat transfer coefficient, which
is derived as

hc =

(
2.38 · |tcl − ta|0.25 if 2.38 · |tcl − ta|0.25 > 12.1 · √var

12.1 · √var if 2.38 · |tcl − ta|0.25 < 12.1 · √var

(4)

Variable fcl is the clothing surface area factor, which is
derived as:

fcl =

(
1.00 + 1.290Icl if Icl ≤ 0.078m2 ·K/W
1.05 + 0.645Icl if Icl > 0.078m2 ·K/W

(5)

When the PPV of an office space is estimated by a hu-
man expert, the office worker’s metabolic rate and level of
clothing insulation are first estimated using Table 2 and Ta-
ble 3 in the Appendix. Given the clothing insulation Icl, it
is possible to calculate the clothing surface temperature tcl

and the convective heat transfer coefficient hc by iteratively
applying Equation 3 and 4. Finally, by using Equation 2
and 5, the Predicted Mean Vote can be estimated.

Although this seminal model was developed in 1970, re-
cent work has validated its accuracy for climate-controlled
environments based on field studies in 160 buildings located
in varied climatic zones [6].

To evaluate comfort in workspaces occupied by a single
office owner, SPOT computes a Predicted Personal Vote
(PPV) as an affine transform of pmv:

ppv = fppv(pmv) (6)

This function is learnt using least squares linear regression
during a training phase, with the worker providing ground
truth on comfort level.

2.2 SPOT
The key idea behind SPOT is to control comfort in a single

workspace by sensing the six variables underlying the PPV
model in Eq. 1. A standard environment sensor is used
to measure air temperature, radiant temperature, air veloc-
ity and humidity. Given that this is an office environment,
the metabolic rate can be assumed to be constant and low.
Therefore, the most difficult variable to sense is the clothing
level.

Figure 1 shows the SPOT clothing sensor built using a
Microsoft Kinect and a servo-controlled infrared sensor. The
Kinect tracks worker location; this information is fed to the
servos that adjust their rotation angle to point an infrared
sensor to the worker’s chest. Knowing that the infrared
radiation emitted by human body is negatively correlated
to the clothing level, SPOT solves an inverse problem using
linear regression to estimate the clothing level as described
in [8]. This work also shows that SPOT accurately estimates
the PMV (and PPV) despite changes in clothing levels and
uncontrolled changes to room temperature by the building’s
heating system.

2.3 SPOT shortcomings
The Kinect sensor allows SPOT to be reasonably sure

about the true occupancy status of the workspace, but it



Figure 1: SPOT is built using a Microsoft Kinect sensor,
an Arduino Microcontroller, and an infrared sensor. The
Kinect tracks the location of the user. The servos control
the rotation angle of the infrared sensor to make sure that it
always points to the torso of the worker. The infrared sensor
detects the infrared radiation emitted by human body. By
measuring the infrared attenuation by clothing, SPOT can
estimate the clothing level of the worker. The laser pointer
is used to calibrate the servos.

only reacts to occupancy. That is, it does not heat the
workspace until the worker is actually present. However,
it takes some time for the workspace to warm up, so the
worker may feel uncomfortable when first entering it on a
cold morning. Moreover, the workspace temperature may
continue to be high even after it becomes vacant: it would
be more efficient to let the temperature drop slightly just
before the worker departs. This motivates us to exploit
ground-truth knowledge of worker occupancy to predict fu-
ture occupancy, thus allowing us to improve worker comfort
and reduce energy cost.

3. CONTROLLER DESIGN

3.1 Learning-Based Model Predictive Control
(LBMPC)

Traditional feedback control determines the control input
based on the control error, i.e., the gap between the desired
and the actual output. For example, if the room tempera-
ture is lower then the desired setpoint, the heater (control
input) is turned on. LBMPC adds two refinements.

• First, machine learning is used to learn a model of the
physical system.

• Second, the model is used to choose optimal control
inputs such that a future control goal is met.

Note that LBMPC does not require an error term in order to
take control actions, thus providing the benefits of open-loop
control.

SPOT+ learns a thermal model of the workspace. An
example of a fact that can be derived from such a model is“if

the heater power is set to 800W, the workspace temperature
increases from 22◦C to 23◦C in 20 minutes.” This model is
used to determine the appropriate heater power to increase
the room temperature to a certain point.

We now describe the mathematical formulation of room
thermal model. Given the outside temperature Tout and the
indoor temperature Tin, by the Newton’s Law of Cooling,
the rate of thermal energy loss, Ploss is proportional to the
temperature difference:

Ploss = k(Tin − Tout) (7)

where k is the conduction factor of the workspace: a workspace
with better insulation has a smaller conduction factor. Sup-
pose that workspace heating is achieved by a heater with
power Phvac and efficiency e. The net heat input rate, P , is
given by:

P = ePhvac − Ploss = ePhvac − k(Tin − Tout) (8)

This net heat input rate is the derivative of thermal flux Q
and is proportional to the temperature change:

P =
dQ

dt
= C

dTin

dt
(9)

where C is the heat capacity of the workspace. Combining
Eq. 8 and Eq. 9, we have:

dTin

dt
=
ePhvac − k(Tin − Tout)

C
(10)

To enable digital control, we convert Eq. 10 to its discrete
version:

Tin(s+ 1) = Tin(s) +
ePhvac(s)− k(Tin(s)− Tout(s))

C
(11)

where Tin(s) is the temperature at the s-th timestep.
The model contains three parameters: the efficiency of the

HVAC system e, the conduction factor k, and the house heat
capacity C. Given tuples of {Tin(s), Tout(s), Phvac(s), Tin(s+
1)} at different timesteps, these model parameters can be
estimated by linear regression. Thus, in the training phase,
SPOT+ conducts a few controlled experiments when the
room is unoccupied, then uses least square regression to find
the parameters of thermal model.

3.2 Occupancy Prediction
It takes time to heat a cold workspace. If workspace occu-

pancy can be predicted, we can use LBMPC to pre-heat it
and increase worker comfort. Symmetrically, heating can be
avoided if the workspace will not be occupied shortly there-
after (such as during a lunch break or at the end of a day).
Inspired by the Pre-Heat system [16], we predict future occu-
pancy at any time using the most similar occupancy history
for that hour of the day. The advantage of this approach
over most prior approaches is that it automatically corrects
for changes in occupancy patterns during holidays and va-
cations, but has the problem that it performs poorly for the
first part of the day.

Specifically, we maintain a database S of worker occu-
pancy. We divide each day into 48 timeslots, each 30 minutes
long. Let t be the identifier of a timeslot and let TOD(t)
return the index of the timeslot in the day (an integer in the
range [0, 47]). For example, TOD(t) = 3 refers to the times-
lot that starts at 1 AM and ends at 1:30 AM. Let m(t) be
the observed or predicted occupancy at timeslot t that is set
to 1 if the room is occupied and 0 otherwise. Let the current



time be t0. To make a prediction of future occupancy, we
first find all timeslots s ∈ S such that TOD(s) = TOD(t0)
and then compare their similarity, where similarity is de-
fined as :

similarity(s, t) =

iX
b=0

δs−b,t−b (12)

where δs−b,t−b = 1 if m(s − b) = m(t − b) and 0 otherwise.
We select the top K timeslots with highest similarity to t0 in
S and we denote them as sk ∈ SK . To do j-th step ahead oc-
cupancy prediction, we calculate the occupancy probability
using the following formula:

p(t+ j) =
1

K

KX
k=1

m(sk + j) (13)

If the occupancy probability p(t+ j) is larger than a thresh-
old, currently set to 0.5, we predict that timeslot t + j will
be occupied, i.e., m(t+ j) = 1.

For our evaluation, we chose K to be 5 and we collected
occupancy data for more than three months.

3.3 Optimal Control Strategy
At a high level, the goal of the optimal control algorithm

is to decide the best time to turn on the heater, potentially
before the predicted arrival time of the worker, and the best
time to turn off the heater, potentially before the worker is
predicted to leave. The control algorithm also provides a
trade-off between worker comfort and energy saving.

More specifically, the optimal control strategy determines
a heater operation sequence over an optimization horizon of
H timesteps that minimizes a linear combination of the to-
tal energy use and a penalty term if the PPV does not lie in
the acceptable range of of [-ε, ε] when the workspace is oc-
cupied3. Similar to Eq. 1, we let x(s) be the environmental
and personal variables at time step s4:

x(s) = {ta(s), t̄r(s), var(s), pa(s),M(s), Icl(s)}

where ta(s) is the air temperature at time step s. Function

ppv(x(s))

evaluate the predicted personal vote (PPV) at time step s.
Let βc(s) and βh(s) be the values of the cold and hot soft
penalty terms respectively at time s, that is, the additional
range of comfort that can be used, with a corresponding
penalty, if this reduces energy use. Let λ be the relative
weight given to thermal comfort. Then, the optimal control
sequence is obtained by solving the following problem:

min

HX
s=1

Phvac(s) + λ

HX
s=1

m(s)(βc(s) + βh(s)) (14)

that minimize linear combination of energy use Phvac and
the discomfort penalty terms βc(s) + βh(s). At every time

3In our evaluation, we choose H= 6, to obtain the optimal
control sequence for the next hour.
4Note that ta(s) in Eq. 1 and Tin(s) in Eq. 11 both denote
the indoor air temperature at time step s.

step s, the problem is subject to the following constraints

ppv(x(s)) ≥ −ε− βc(s)

ppv(x(s)) ≤ ε+ βh(s)

βc(s) ≥ 0

βh(s) ≥ 0

The inequations give soft penalties to time steps that have
absolute PPV values larger than ε.

Solving this optimization problem is difficult because the
ppv(.) function is non-linear and can be evaluated only us-
ing an iterative numerical method. Therefore, we convert
the problem to a graphical problem where each graph node
represents a potential system state over a ten-minute inter-
val, each link represents a feasible state transition, and a
link weight represents the energy and comfort cost of mak-
ing a state transition. Then, finding the optimal control
sequence corresponds simply to finding the shortest path in
this graph.

Figure 2 shows an example of a graphical state model.
Note that all the nodes at a particular time step form a
layer. The r-th node at layer s, denoted Ns,r represents a
potential system state xs,r. For simplicity, we assume that
the hot and cold penalty terms are identical and denoted
β(s) so that the penalty in the rth state at time step s,
denoted β(s, r) is given by:

β(s, r) =

(
0, if |ppv(xs,r)| < ε

|ppv(xs,r)| − ε, otherwise
(15)

Edges connect all feasible state transitions between adjacent
layers. The energy cost to transition from state Ns,r to
state Ns+1,r′ is denoted Phvac(Ns,r, Ns+1,r′), which can be
calculated from Eq. 11. The edge weight between nodes
Ns,r and Ns+1,r′ is the energy cost from state Ns,r to state
Ns+1,r′ plus the weighted comfort penalty:

d(Ns,r, Ns+1,r′) = Phvac(Ns,r, Ns+1,r′)+λm(s+1)β(s+1, r′)
(16)

For example, if λ = 10000 and m(2) = 1, the edge weight
between nodes N1,1 and N2,1 is d(N1,1, N2,1) = 800+10000∗
1 ∗ 0.5 = 5800. The optimal control sequence is the shortest
path from node N1,1 to the dummy end node after the last
step.

Note that the optimal control sequence updated at the end
of each time step because of changes in the environment or
if the predicted occupancy m(s) is different from the actual
observation.

4. EVALUATION
This section reports on a preliminary performance eval-

uation of five different temperature control schemes as well
as the potential benefits of predictive over reactive control.
The control target is a single office room in the University
of Waterloo that was occupied by one of the authors5. The
workspace is about 11.9m2 and its temperature is main-
tained at around 23◦C by the centralized HVAC system.
The worker usually comes to the office at around 8:30 AM
and leaves at about 5:30 PM every weekday.

5We realize that it would have been better for the evalua-
tion to have been done with office worker unrelated to the
authors, but, given the experimental nature of this work,
we were reluctant to solicit volunteers who might freeze or
sweat due to bugs in our software!



s = 1 

Tin = 23 
PPV= 0 

Tin = 24 
PPV= +1 

Tin = 23 
PPV= 0 

Tin = 22 
PPV= -1 

s = 2 

Tin = 24 
PPV= 0 

Tin = 23 
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End 
Phvac = 400, 𝛽 = 0 
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N2,2 
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N3,1 
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Figure 2: We use a graphical state model to find the optimal control sequence. Each state in the graph represents a potential
control outcome at a ten-minute time step s. Tin is the predicted indoor temperature and PPV is the Predicted Personal Vote
given such an indoor temperature. Note that we are making the implicit simplifying assumption that future comfort values
are functions of temperature alone, i.e., that there is no change in worker clothing levels or in the environment variables. For
each edge, Phvac is the state transition energy cost, and β is the comfort penalty of the destination state. The optimal control
sequence is the shortest path from the leftmost state to the rightmost state. The graph is recomputed at the end of each time
step.

Note that the heater we used only supports on/off con-
trol, while our model in §3.3 assumes a heater with contin-
ues input power. To simulate a heater with variable heating
power, we use pulse width modulation (PWM). Let the in-
put power of the heater be Pmax Watt and we defined a
control cycle of C seconds. To simulate the input power of
Phvac Watt, the heater is turned on for CPhvac

Pmax
seconds in

the control cycle and off for the rest of time in that cycle.

4.1 Temperature Control Schemes
We now describe the five different temperature control

schemes that we implemented in this workspace.

• Fixed Setpoint: This control scheme has a fixed tem-
perature setpoint of 25◦C. If the measured tempera-
ture is lower than 25◦C, the heater heats the room
until measurements indicate that it has reached the
setpoint.

• Scheduled Setpoint: This emulates the behaviour
of a “Smart Thermostat”: the controller maintains the
room temperature at 25◦C from 8 AM to 6 PM.

• Reactive Temperature: This control scheme starts
to heat the room when occupancy is detected, and
maintains a setpoint of 25◦C only when the worker
is present. To improve the robustness of the system,
heating commences only after 5 minutes of continuous
occupancy and stops when the workspace is vacant for
5 minutes. This reduces sensitivity to transient occu-
pancy.

• Reactive PPV (SPOT): Instead of maintaining a
constant temperature as in reactive temperature con-

trol, reactive PPV control maintains personal comfort
(PPV) at the category B thermal comfort environ-
ment [3] where ppv ∈ [−0.5, 0.5].

• Optimal: This scheme finds the best heating control
sequence using LBMPC. We maximize worker comfort
by setting λ in Eq. 14 to 10000 and ε to 0.5.

We attempted to run each control scheme for at least two
days; the actual number of days for each scheme is shown in
Table 1. For reactive temperature control, we obtained two
days of data but later discovered that one day’s data was
not valid because one sensor had stopped working. There-
fore the results for this scheme are not reliable. On the other
hand, we have four and five days data respectively for reac-
tive PPV and optimal control schemes, so the comparison
of their relative performance is more reliable. Recall that
all experiments were done in a building where the existing
heating system maintained temperature at very nearly 23◦C
independent of the external temperature, so the results from
the different days are comparable. Nevertheless, we stress
that these results are far from statistically valid, and there-
fore must be viewed as suggestive, rather than definitive.

4.2 Evaluation Metrics
We propose three performance metrics. The Average

Daily Energy Consumption is the total average energy
consumed over a day. The Average Absolute PPV is
the average absolute PPV value conditional on occupancy
(because personal comfort only matters if the workspace is
occupied). If ppv(t) denotes the PPV value for time slot t



Control Scheme Number of Days
Fixed 2

Scheduled 2
Reactive Temperature 1

Reactive PPV 4
Optimal 5

Table 1: Number of days tested for each control scheme.

during the day, the average absolute PPV is:PT
t=1 ppv(t)m(t)PT

t=1m(t)
(17)

where m(t) is 1 when the workspace is occupied and 0 oth-
erwise.

Consider a control scheme A that always maintains the
PPV at−0.5 and an alternative control scheme B that main-
tains PPV at 0 for half of the time and -1 for the other half.
Both schemes have the same average absolute PPV. How-
ever, a worker will feel much more comfortable under scheme
A because a typical worker is comfortable in the PPV range
of [−0.5, 0.5]. Thus, we define the Average Discomfort
to quantify how uncomfortable a worker feels over a day.
Specifically, we define the discomfort at timeslot t as:

d(t) = max(|ppv(t)| − 0.5, 0) (18)

In other words, if the PPV at timeslot t is in [−0.5, 0.5],
the discomfort dt is 0, otherwise, the discomfort is |ppvt| −
0.5. We then calculate the average discomfort conditional
to occupancy as in Eq. 17.

4.3 Evaluation Results

4.4 LBMPC
We first evaluated the accuracy of LBMPC controller’s

thermal model by choosing a variety of setpoints between
21◦C and 27◦C and determining whether the temperature
predicted the model matched the actual temperature. Over
a period of two days, we found that there was a good match
between these values, with a root-mean-square error of only
0.22◦C. This shows that the LBMPC control is feasible for
the office room under study.

4.4.1 Comparision between control schemes
We compare the five temperature control schemes based

on the three metrics discussed above. Figure 3 and 4 show
the results.

The fixed temperature setpoint control consumes 21.08
kWh of electricity daily and has an average absolute PPV
and average discomfort of 0.42 and 0.07 respectively. Be-
cause the fixed temperature setpoint control always keeps
the room temperature at 25◦C, it guarantees the highest
level of user comfort but consumes the most of energy as
shown in the figures.

By using a temperature control schedule, we can save
about half of the energy consumed, because the heater is
off at night (i.e. from 5:30pm to 8:30am). Thus, we see
that scheduled setpoint control consumes only 11.6 kWh of
energy. However, this comes at a cost: if the worker is
present in the workspace at an unscheduled time, or when
the room is not sufficiently heated, the comfort target is not

met. Thus, this scheme’s average absolute PPV and aver-
age discomfort are higher at 0.71 and 0.23 respectively. One
could argue that the comfort target could be met by choosing
a more conservative schedule. This is, of course, true, but
the choice of a more conservative schedule would increase
the energy cost. Further, without knowledge of the room’s
thermal characteristics, it is difficult to determine precisely
how early to start heating the room before the worker’s ar-
rival time.

We can further reduce energy consumption using reac-
tive temperature control. The worker regularly leaves the
workspace during working hours for lunch and meetings. Re-
active control turns the heater off during these occupancy
gaps to save energy. Over a day, the reactive control system
consumes only 6.30 kWh of electricity (a further reduction
of about 40%), but, because the workspace is cooler than de-
sirable at the start of the day, and because the reactive tem-
perature control scheme controls temperature, not worker
comfort, its average absolute PPV and average discomfort
are 0.86 and 0.36 respectively.

Reactive PPV control, as in SPOT, by maintaining a con-
stant PPV level rather than a temperature setpoint, can
improve user comfort. We see that it increases the user
comfort with nearly no change to energy consumption. The
daily energy consumption of reactive PPV control is 5.04
kWh (a slight decrease, actually), but its average absolute
PPV and average discomfort are 0.53 and 0.20 respectively,
which are significant improvements.

Recall that we set the tuning parameter for optimal con-
trol to greatly weight user comfort. Thus, the scheme maxi-
mizes user comfort without great regard to energy cost. Nev-
ertheless, we find that optimal control consumes about 7.62
kWh of electricity (a slight increase over reactive control)
but its average absolute PPV and average discomfort are
0.47 and 0.02, which are comparable to the fixed scheme.

In summary, we find that optimal control provides nearly
the best comfort of all the schemes, but does so while reduc-
ing energy cost by a factor of more than three compared to
fixed setpoint control, and a factor of more than two com-
pared to scheduled setpoint control. It uses roughly the same
energy as a reactive control scheme, but reduces discomfort
by an order of magnitude (0.2 to 0.02). Thus, it has the best
tradeoff between energy consumption and user comfort.

We now present a more detailed comparison between the
reactive PPV and optimal scheme. Figure 5 and 6 show a
typical example of the behaviour of the two schemes. Each
figure shows the PPV value over the course of the day, with
the bars on the X axis representing occupancy. For reactive
control, the room starts to heat at around 8:40 AM when
the worker arrives. It requires more than half an hour to
reach the target PPV value. In Figure 2, the room starts to
pre-heat at around 7:30 AM and when the occupant arrives
at 9:00 AM, the room temperature is already in the com-
fort zone. This demonstrates how the optimal scheme im-
proves user comfort over the reactive scheme by forecasting
workspace occupancy. Note also that the optimal scheme, by
frequently re-evaluating the optimal heater control sequence,
is able to adjust automatically to unpredicted changes in
workspace occupancy.

5. RELATED WORK AND DISCUSSION
There has been extensive work both on HVAC model-

ing [14] as well as optimal HVAC control in both residen-
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Figure 3: Average absolute PPV versus daily energy con-
sumption for five control schemes. The fixed (always-on)
scheme has the highest energy cost but the best perfor-
mance. The scheduled control scheme reduces the energy
cost but increases discomfort. The reactive scheme based
on temperature has a low energy cost, but causes the most
discomfort. The reactive scheme based on PPV has nearly
the same energy cost as the one based on temperature, but
lowers the energy cost. Finally, the optimal scheme achieves
nearly the same comfort level as the always-on scheme, but
at a much lower energy cost.

tial and commercial buildings, as surveyed in Reference [17].
There has also been some prior work on comfort index regula-
tors that control HVAC systems so as to maintain a specified
level of thermal comfort for occupants (for example, see Ref-
erences [4,12] and the work cited therein). Unlike this prior
work, which typically carefully model a central HVAC plant
and use optimization as the solution approach, our focus on
personal comfort allows us to use a particularly simple (i.e.,
single zone) physical model and a solution approach based
on optimal control.

The work that is most closely related to ours is by Gomez-
Otero et al [9], where the estimated PMV in a room is used
to control the setpoint and airflow of individual HVAC units.
Our work differs from their in three ways. First, they con-
trol room cooling, rather than room heating. Second, we
use a Kinect for clothing level computation as well as oc-
cupancy ground truth. In contrast, they use heuristics for
clothing level estimation and a smartphone for worker local-
ization. Finally, we provide exact energy costs, whereas in
their work, they are only able to estimate energy efficiency
from the number of hours of operation of the HVAC units.
An additional problem with their work is that they do not
describe their algorithms or control scheme in any detail,
making it impossible to compare their work with ours.

Aswani et al [4] have used an LBMPC approach for HVAC
control, but our use of the Microsoft Kinect sensor to es-
tablish ground truth about workspace occupancy, which is
novel, allows us to eliminate a significant source of control
error.

PreHeat [16] also attempts to improve user comfort by
starting heat a room in anticipation of future occupancy.
We differ in our use of LBMPC and optimal control to accu-
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Figure 4: Average discomfort versus daily energy consump-
tion for five different control schemes. The trends in this
metric are nearly identical to those in Figure 3.
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Figure 5: PPV vs. time of day for the reactive PPV control
scheme. Note that this control starts to heat the room when
occupancy is detected.

rately calculate the optimal time to start heating. Moreover,
we use the PPV model to accurately model user thermal
comfort, which indicates the upper bound for temperature
setback.

Our experiments indicate that the quality of the optimal
control schedule is limited by the accuracy of occupancy pre-
diction. The current accuracy of occupancy prediction at a
half-hour granularity is about 80% during the day time (6
AM to 6 PM). By increase the time granularity to 10 min-
utes, we can improve the accuracy of occupancy prediction
to almost 90%. We find it difficult to further improve the ac-
curacy unless we can obtain more side channel information.
For example, Gupta et. al. [10] use a GPS mounted on the
home owner’s car to forecast the arrival time of the home
owner. Similarly, Ardakanian et. al [5] use the sound and
light level of a room to infer occupancy and use a Partially-
Observable Markov Decision Process (POMDP) for building
heating control. We anticipate incorporating these into our
future work.

6. CONCLUSION
Building on our prior work on personal thermal control [8],

we have described SPOT+, an LBMPC-based optimal con-
trol framework that find the optimal balance between the
energy-comfort tradeoff. Using occupancy and temperature
prediction, SPOT+ finds the best control schedule that min-
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Figure 6: PPV vs. time of day for the optimal control
scheme. Note that this control starts to heat the room before
the estimated arrival time

imizes the energy consumption without affecting user ther-
mal comfort. Preliminary experiments show that SPOT+
saves about 60% of energy and reduces user discomfort from
0.36 to 0.02 comparing with different baseline methods.

In future work, we plan to use our approach to provide
personal thermal comfort in open-plan office spaces. We
are also considering the tradeoff between using low-power
heaters that heat for a long time but do not cause load peaks
versus high-power heaters that can quickly heat a space, but
can cause load peaks.
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APPENDIX
Here are the two tables used for PMV computation from the
ISO 7730 standard.

Activity
Metabolic Rate

W/m2 met
Seated, relaxed 58 1.0

Sedentary activity 70 1.2
Standing, medium activity 93 1.6

Table 2: Metabolic Rates

Work Clothing
Clothing Insulation (Icl)

clo m2 ·K/W
Underpants, shirt,
trousers, smock, socks,
shoes

0.90 0.140

Underwear with short
sleeves and legs, shirt,
trousers, jacket, socks,
shoes

1.00 0.155

Underwear with long legs
and sleeves, thermojacket,
socks, shoes

1.20 0.185

Underwear with short
sleeves and legs, shirt,
trousers, jacket, heavy
quilted outer jacket and
overalls, socks, shoes, cap,
gloves

1.40 0.220

Underwear with short
sleeves and legs, shirt,
trousers, jacket, heavy
quilted outer jacket and
overalls, socks, shoes

2.00 0.310

Table 3: Thermal Insulation for different clothing levels


